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ABSTRACT

In this paper a series of fracture problems in composite
materials are identified, their methods of solution are briefly
discussed, and some sample results are presented. The main
problem of interest is the determination of the stress state in
the neighborhood of localized imperfections such as cracks and
inclusions which may exist in the composite. Particular emphasis
is placed on the evaluation of quantities such as the stress
intensity factors, the power of the stress singularity, and the
strain energy release rate, which may be used directly or indi-
rectly in connection with an appropriate fracture criterion for
the prediction of fracture initiation and propagation load
.levels. The topics discussed in the paper include a crack in
layered composites, a crack terminating at and going through a
bi-material interface, a penny-shaped crack in a filament-
reinforced elastic matrix, and inclusion problems in bonded
materials.

The research reported in this work was supported by The National
Science Foundation under Grant GK-11977 and by the National
Aeronautics and Space Administration under Grant NGR-39-007-11O.



1. INTRODUCTION

Generally the fracture of composite materials may be con-

sidered from two different points of view. In the first approach

the main interest is in estimating or studying the "bulk strength"

of a given structure or of a part under a known system of external

loads and environmental conditions. In this type of studies it

is usually assumed that the material is statistically homogeneous

and existing imperfections (which are unavoidable) are randomly

distributed. Here, the very nature of the problem requires that

some kind of statistical strength theory be used as a guide in

the investigations.

In the second approach to the fracture studies in composites,

one is basically interested in the initiation of fracture propa-

gation from the "localized" imperfections which are known (or

assumed) to exist in the material. Here, before embarking on

any elaborate analysis, for this local fracture initiation one

has to adopt a proper fracture criterion and decide on the type

of "load factor" to be evaluated. Usually the fracture criterion

consists of a simple comparison between a calculated load factor

and a material constant which is determined from certain standard

experiments. Hence, the approach is, of necessity, deterministic.

In this paper we are interested only in the second type of

problems, namely, the fracture problems arising from isolated

imperfections. The most common forms of these imperfections -

which may be found in composites are voids, cracks, and inclu-

sions with varying degrees of relative stiffness. In studying
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the composites which consist of perfectly bonded multiphase

elastic continua, it is usually assumed that the imperfection

located near to or on an interface may be idealized as a crack

or as a flat inclusion, the reason being partly analytical. As

in most analytical work on the subject, in this paper we will

restrict our attention to the linearly elastic materials and

concentrate our numerical effort on the evaluation of the strength

of the stress singularities known as the stress intensity factors.

These factors are defined in terms of (or, are obtained from)

the asymptotic expressions for the stress state around the singu-

lar points, which are generally of the following form:

k k______ 1 k2 2 r 1

a. )fij f 1 (r,) + 1 f. . (r,O) + O(r -) (1)
13 (2 r)a fij (2r)a 1J

where k1 and k2 are the stress intensity factors, (r,O) are the

polar coordinates in the plane perpendicular to the periphery of

the crack or of the inclusion, fk, (k=l,2) are bounded functions,

and a is the power of the singularity (0 < a < 1). The conjecture

here is that, regardless of the nature of the singularity at the

imperfection front, in at least ideally brittle materials k1 and

k2 are a reasonable measure of the severity of deformations and

stresses at the expected location of the fracture initiation, and

hence should provide sufficient information for the calculation

of the "load factor" which may be used in a proper fracture

criterion.

Figure 1 shows various possible modes of crack initiation

in the neighborhood of a singular point. Figure la describes the
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most probable crack propagation mode for a crack imbedded in a

symmetrically loaded homogeneous (and from the viewpoint of frac-

ture resistance, isotropic) medium. Here, as the crack propa-

gates, the stress state around the crack tip remains autonomous

or self-similar, the only change being in the stress intensity

factor. Therefore, in this case, if one prefers to use it, an

energy balance type of fracture criterion is applicable. The

only other fracture mode for which this could be said is the

propagation of an interface crack shown in Figure lc. Here,

(kl2 + k22 ) is the measure of the strain energy release rate and

may be considered as an appropriate load factor [1]. The type of

fracture shown in Figure lb may initiate from a crack tip around

which the stress state is not symmetric. In bonded materials

containing an interface flaw, if the adhesive strength of the

bond is greater than the rupture strength of one of the adjacent

materials, the fracture mode may be that described by Figure ld.

Figure le shows the fracture initiation around the end point of

a flat elastic inclusion. The common feature of the stress singu-

larities in fracture problems described by Figures la-le is that

the power of the singularity a shown in (1) is 1/2.

On the other hand in the crack initiation problems for the

flaws running into: and that going through a bi-material interface

shown in Figures lf-li this no longer is the case, i.e., if

P1 t P2 then a K 1/2 where P1 and P2 are the shear moduli

(1 > a > 1/2 for H1 > P2 and 1/2 > a > 0 for P1 < P2 in Figures

lf-lg, and 1/2 > a > 0 for Figure li). In the problem of the

flaw running into an interface, whether further fracture
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propagation would be the cleavage of the adjacent medium (f),

debonding along the interface (g), or reflection back into the

first medium (h) may again depend on the relative strength-to-

load factor ratios for various possible fracture modes. The same

principle also applies to the initiation of debonding crack shown

in (i).

In this paper we will give the results regarding a, kn, and

fijn (i,j,n = 1,2) for various problems arising from the fracture

of composite materials. As to how to use these results in prac-

tice, it may depend on one's preference for a particular fracture

criterion. However, a certain comparative test common to all

fracture modes shown in Figure 1 is worth noting. Whatever the

nature of the conjectured fracture mechanism (namely, cleavage

starting from the singular point, or fracture initiation and

propagation through hole or craze formation and coalescence around

the singular point), the intensity of the (tensile) stress field

within the immediate neighborhood of the singular point will be

the major factor controlling the fracture initiation, and this

stress field intensity is clearly dependent on ki/ra, (i = 1,2)

(see equation (1)). Hence, comparing, for example, the maximum

value of the cleavage stress a,0 (in the homogeneous medium) or

an interface stress vector computed in terms of ki and a at a

characteristic distance from the singular point, with the corre-

sponding quantities obtained from idealized test configurations

under rupture conditions may provide a rather simple criterion

for fracture initiation.
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2. GENERAL METHOD OF SOLUTION

Assuming that the solution to the elastostatic problem for

the imperfection-free nonhomogeneous solid is available, the

singular behavior of the solution around an isolated imperfection

may be obtained from the stress disturbance or perturbation prob-

lem. If desired, the complete solution may then be found through

superposition. The perturbation problem is a mixed boundary

value problem and can always be formulated in terms of a system

of singular integral equations. In the case of plane strain,

the generalized plane stress, and the axisymmetric problems for

the type of imperfections shown in Figure 1 (and for many other

problems), the general form of these integral equations may be

expressed as follows:

2 1 a2 dt
I a.j .j(x) + -jf ij jt t-x

-a

a2 3 axk -1k-I
+ If I [cijk j(t) (x+a)k.- + dik jt (a-x) - ]dt

7 j=l k=l i (t+x+2a)k k(t+x2a)k

a

a

+ f kij(x,t) %j(t)dt = yi fi(x) , (i=l1,2), -a<x<l (2)

-a

where a is the half-length or the radius of the imperfection and

aij, bij, cijk , dijk, and yi (i,j = 1,2, k = 1,2,3) are constants

which are dependent on the elastic properties of the materials

forming the composite. In crack problems the input functions f,

(i = 1,2) are the components of the traction vector on the crack
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surface and the unknown functions Pi are defined by [2-8]
*1

(x)= x (ui+ - u i -) , (i : 1,2) (3)

where u1 and u2 are the crack surface displacements parallel and

perpendicular to the plane of the crack, respectively, x is the

(rectangular or radius) coordinate in the plane of the crack,

and superscripts + and - refer to the opposite faces of the crack.

Note that in this case Pi (i = 1,2) may also be interpreted as

dislocation densities.

In the inclusion problems the input functions and the unknown

functions are generally defined by [9]

fk(x) = ax Umk (k = 1,2) , (4)

1
(x

) = a1 2 - a12 ' ¢2 (x) = 2 222 (5)

where uml and um2 are the components of the displacement vector

in the inclusion-free matrix at the location of the inclusion

obtained from the given system of external loads, and a1 2, a2 2

are, respectively, the shear and the normal stress acting on the

surface of the inclusion, the superscripts + and - again referring

to the opposite faces of the inclusi6n.

In (2) the kernels kj, (i ,j = 1,2) are known functions

which are bounded in plane problems and have logarithmic singu-

larities in axisymmetric problems. In either case they are

treated as simple Fredholm kernels. If the crack or the inclusion

is completely imbedded in a homogeneous medium, then the constants
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aij (i,j = 1,2) vanish and the kernels in the third integral in

(2) are bounded. In this case the system of integral equations

has simple Cauchy kernels and the solution has r
-
1 / 2 type singu-

larity [2,3,5,7]. If the imperfection lies along the interface,

then the constants cijk and dij k are zero, the system of singular

integral equations are of the second kind and the solution has

the following typical oscillating singularity with a power -1/2:

(~k ij)~ r-1/2 cs[wlog(r/2a)] (6)

If an imperfection end terminates at an interface, from (2)

it is seen that the kernels in the third integral become unbounded

(as x 1) as x and t approach the end point simultaneously. In

this case the system of integral equations is said to have gener-

alized Cauchy kernels, the power of the singularity of the solu-

tion is no longer -1/2, and the solution of the system is not

straightforward and requires much more care [7].

In all the problems discussed here, it is not difficult to

show that the index of the system of singular integral equations

(2) is +1, hence the solution of the problem will contain two

arbitrary constants [10]. These constants are determined by

using the conditions

a

f ~k(x)dx = 0 , (k = 1,2). (7)
-a

In crack problems (7) expresses the conditions of single-valued-

ness of displacements, and in inclusion problems it constitutes
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the conditions of static equilibrium of the inclusion.

For the system of singular integral equations with simple

Cauchy kernels the direct regularization technique in the type

of problems under consideration becomes extremely cumbersome,

and for the equations with generalized Cauchy kernels none exists.

In practice these equations may be solved numerically in a very

straightforward manner by using the methods described in [11-13].

In these techniques the function-theoretic method as described

in [10] is applied directly to the integral equations and the

fundamental functions of the system are obtained. Noting that

these functions are the weights of certain Jacobi polynomials,

and using the properties of the Jacobi polynomials, a set of

Gauss-Jacobi type integration formulas are developed for the

singular integrals and the system is solved numerically. Since

the fundamental functions contain all the information regarding

the singular behavior of the solution, and since they are deter-

mined exactly, the resulting numerical solution preserves the

correct nature of the singularity.

3. CRACK PROBLEMS IN LAYERED COMPOSITES

In plane or axisymmetric problems for layered composites

containing a crack completely imbedded into a homogeneous medium

and lying parallel to the interfaces, the fundamental functions

and the solution of the system of singular integral equations

are of the following form
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w1(x) = w2(x) = w(x) = (a2 - x2)
- 1

/2 , (8)

hk(X) = w(x) Fk(x) , (k = 1,2). (9)

where the bounded functions Fk(x), (k = 1,2) are determined from

the solution of the integral equations. In this problem the

increased number of layers simply affects the computation of the

Fredholm kernels kij(x,t), otherwise presents no conceptual dif-

ficulty. The stress intensity factors defined by

kl(a ) = lim[2(x - a)]1/2 a (x 0 ) ,
x-* a yy

k2(a) lim[2(x - a)] 1 x y (X ,O) , (lO.ab)
~~~~~xya

are easily shown to be related to the asymptotic values of +1 and

~2 as follows:

() = - 2p lim[2(a - x)]1/2 2(x)
kl~a)-1 + K x)] 4ax

x~a
k (a) = - 2P lim[2(a - x)]1/2 yx) (1l.ab)

2 ~~~~~~x-*a

where p is the shear modulus, K = 3 - 4v for plane strain, and

K = (3 - v)/(l + v) for generalized plane stress, v being the

Poisson's ratio of the medium surrounding the crack.

In this problem the strain energy release rate for the crack

propagating in its own plane may be expressed as

DU = _(1 + K) (k 2 + k22) (12)
Do a 4Pt 1vp t fcn 2

From the viewpoint of fracture propagation in brittle materials,
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another important quantity is the "cleavage stress" add given

by [14]

aee(r,) = 1 0 [kcos 2 0 3 k2sine] + O(rl/2) (13)a (r, os I) (13)
(2r)1/ 2 2 [k1cos 2 2

where (r,e) are the polar coordinates at the crack tip.

If the crack is on the interface, the system of singular

integral equations is of the second kind and the fundamental

function is given by [3]

w(x) = (a - x)a(a + x)6 (14)

1 mi- 1 , W log(' + Y)
cv i =-2 ' 22 1 - Y

(p + KVI+) - (P+ + K+1_)

: (p + K P+) + (P+ + K+1 _) 

where the subscripts + and - in the elastic constants refer to

the materials on the y > 0 and y < 0 side of the crack, respec-

tively. In this case, defining the stress intensity factors

k
1

and k2 by

k
1
+ ik2 = lim[2(x - a)]1 / 2 (x + a) [ayy(x,O) + i xy(x,0)],

~~~~~xa x a [ yy ' xy
(x
,x-*a
(15)

the strain energy release rate for a crack propagating along the

interface may be expressed as [1]

HU~ +
~ 2 2aa =2 c_ - (kl2 + k2 2)

c+ -_ +U_ - ._a+
C =+ P+ + 2 - +I_ . (16.ab)p_ + K_' +II+ U+ K+P_''
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The functions fij (r,0) shown in (1) which give the angular

variation of the stresses around the crack tip may be found, for

example, in [14] for the homogeneous materials and in [15] for

an interface crack.

Figures 2-9 show some numerical results for various (plane

strain) configurations involving the materials steel (E = 3xlO7

psi, v = 0.3), aluminum (E = 107 psi, v = 0.3) and epoxy (E 

4.5x105 psi, v = 0.35). The results are obtained for the per-

turbation problem in which the crack surface tractions are

assumed to be

aOyy(x,O) = o Oxy(X,'O) = . (17)

Figure 2 shows that for the two (similar) half planes bonded

through an epoxy layer which contains a symmetrically located

crack, the stress intensity factors decrease with decreasing

layer thickness. The opposite result is observed for the free

layer, k1 and k2 going to infinity as h + 0. The limiting value

of the stress intensity factors, p1(l - v2)/(1 - vl)p2, for h +-* 0

is obtained by observing that the limit of the crack opening dis-

placements in the layer 3 as h +- 0 is equal to that in the homo-

geneous plane 2. If the crack is not in the mid-plane of the

layer, k2 is not zero. For a fixed ratio of (h/2a) = 1, the

results are shown in Figure 3. In this and in the subsequent

figures e0 is the probable cleavage angle obtained from [16]

a -(2r) 1/2 o (r,)]= 0 (18)

where the cleavage stress Ale is given by (13). The figure
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clearly shows that, for this symmetric geometry, the propagating

crack would tend to stay in the mid-plane of the layer. The

figure also shows a measure of the strain energy release rate

W3 defined by

4P k ~~2 +k2~~~~43
w3 4pU kl + k 2 (19)
3 :a~aoo 2 (1 + K

3
) 3a3 a 2

As hl/h goes to 0 or 1, the crack becomes an interface crack and

the nature of the singularity changes. Thus at h1 = 0 and at

hI = h, k1 and k2 (considered as functions of h
l
) are not con-

tinuous. The quantity which is continuous is the strain energy

release rate. Similar to (19) defining the measure of the strain

energy release rate for an interface crack (from (16)) by

2 2(k2 + k )
23 = 2c2 3 3 () (20)

a2aa ac 0o2 (1 + K 3 ) D a 23

the limiting values of W3 may easily be found as follows:

lim W -2c2 3 W li m W 3 = 2 W13 (21.a,b)
hl-+h 3 c23 Cl3 hO3 c131

where the constants c2 3 and c1 3 are given by (16.b) and W23 and

W13 are obtained from the solution of the interface crack prob-

lem [4].

Results similar to that shown in Figures 2 and 3 are given

in Figures 4 and 5 for three different materials. In this case

too it is seen that (if 13 < 'l' P3 < 12) ' for a given crack

length as the layer thickness h decreases the resistance of the
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bonded joint to fracture propagation increases (i.e., there is

a reduction in W3 and in the cleavage stress). Figure 6 shows

the results for two bonded layers. Here, as the crack approaches

the free surface, k1, k2 and W2 become unbounded. For P2 < p1I'

they all decrease as the crack approaches the interface, at

h
3
= h2 k1 and k2 are again discontinuous, and W2 = 2W1 2 /c1 2

where W1 2 may be evaluated from the solution of the interface

crack problem (see Figure 9).

Figures 7-9 show some of the results for the interface crack

problem. Here ki(o), (i = 1,2) and W2 3 (n) refer to the corre-

sponding values for two bonded half planes with an interface

crack (i.e., h = A). In the case of three materials (Figure 7)

if P3 < 2' 113 < p'I for a given flaw size again the fracture

resistance of the bond increases with decreasing layer thickness.

As seen from Figures 8 and 9, the opposite observation is valid

if there is a free surface. Further results on the plane strain

problem for a crack in layered materials may be found in [3,4].

The equivalent results for a penny-shaped crack are given in

[5,6]. Similar results for an elastic fiber imbedded into an

elastic matrix having perfect adhesion except for an axisymmetric

interface crack are given in [8].

In the solutions given by the Figures 2-9 the adhesive layer

is treated as an elastic continuum, and it is assumed that the

flaw is a crack. In some problems this may be a realistic model.

In some other problems, however, these assumptions would not only

complicate the analysis, they may not even be realistic. This

-14-
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would be the case, for example, in bonded materials in which the

relative thickness of the adhesive is so small that the thickness

variation of the stresses, in the adhesive layer may be neglected.

In such problems the adhesive may be approximated by a combina-

tion of shear and tension springs, which simplify the interface

conditions considerably. Referring to the insert in Figure 10,

for two dimensional problems these conditions may be expressed as

(u2 - Ul)/h3 = axy/13 , (y = 0)

(v2 - vl)/h3 = ayy/E3 , (y = 0) (22.a,b)

where h3, P3' E3 are, respectively, the thickness, the shear

modulus, and the Young's modulus of the adhesive, u
i
, v

i
, (i 

1,2) are the displacements and axy' Oyy are the tractions on the

surfaces of the two materials bonded through the adhesive.

For example, for the two half planes shown in Figure 10,

defining the adhesive stresses by

ayy(xO) = Pl(x) , xy(XO) = P2 (x) (23.a,b)

and using the solution for the elastic half plane [10], (22) may

be expressed as

a x
-2( logt - x dt + y f Pl(t)dt - bp2(x) + e = 0

-f P2
( t )

l

1 tcP ( ) -a 0

a X
f p1 (t) logt - xdt - y f P2 (t)dt - cPl(x) + d = 0 

-a 0

a a
JPfltd= , P2(t)dt = P t)dt Q , (24.a-d)

-a -a
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where

Y = Yl/Y2 b = h3 /( 3y2 ) , C = h3 /(E 3y2 ),

d = v2 (0)/Y2 , e = u2(0)/Y2 ,

I K -1 K -1
1l 4= ( P 2--)

I 1 K +1 K2+1
2 = 4'rr 

2

Pi(x), (i = 1,2) are the unknown functions and the unknown con-

stants u2 (0) and v2(0) are determined from the equilibrium con-

ditions (24.c,d). The integral equations (24.a,b) have only

logarithmic singularities; hence, the Fredholm theory is appli-

cable and the functions pi, (i = 1,2) are bounded*.

Figure 10 shows the contact stresses for two elastic half

planes bonded through an adhesive layer of width 2a and thickness

h3. The figure also shows the results for the limiting case

h3 = 0 for which the closed form solution is given by [15]

_P +l 1 1 x)]pl(x) = 2 ( _ x2)1/2 cos[wlog(a

P2(x) P a + 1 1 2 in[l (a + x)] 2IT 1/2 (a2 _ x2) 12 sin[alg(a 
(26.a,b)

where

a = (Kj 2 + 1 )/(K2 11 2
1lW = 2 log a 

It should be noted that, for the configuration given in

*~~~~~~~~~~~~~~~~~~~~

From (24) it can be shown that at x = + a even though pi(x),

(i = 1,2) is bounded, the derivative dpi/dx has a logarithmic

singularity, i.e., dpi/dx K log(a-x) for small values of (a-x).

-16-
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Figure 10 if the relative thickness of the adhesive, h3 /a is

increased, the contact stresses become more "uniform" and their

peak values decrease. Table 1 shows the values of the "stress

concentration factors" for three different adhesive thicknesses.

Further application of this concept to the stress analysis of

the adhesive joints may be found in [17].

Table 1. Stress concentration factors
for two bonded half planes.

h/a 0.004 0.010 0.040

C yy(a,O)/(P/2a) 4.240 2.900 1.672Oyya,)(/a

a xy(a,O)/(P/2a) -0.7020 -0.3322 -0.1148xy

4. A CRACK TERMINATING AT AND GOING THROUGH AN INTERFACE

The solution of the problem of a crack propagating toward

and terminating at a bimaterial interface was given in [7].

From the viewpoint of fracture propagation, in this problem the

quantities of interest are the stress intensity factors, the

power of the singularity, a (see equation (1)), and the angular

distribution of the stresses around the crack tips. For the

crack tip imbedded in the homogeneous medium a = 1/2 and the

O-dependence of stresses are well-known (see, for example, [14]).

In [7] a was obtained directly from the integral equations by

using the function-theoretic approach. It may also be obtained

by using the technique of the eigenfunction expansion [18].

The O-dependence of the stresses around the crack tip ter-

minating at the interface is dependent on the elastic constants

pi, Ki, (i = 1,2) and is obtained from the solution of the
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problem [7]. Figures 11-13 show the results for two bonded semi-

infinite planes where material 1 contains a semi-infinite crack

perpendicular to and terminating at the interface. The plane is

loaded by symmetric wedge forces P applied to the crack surfaces

at a distance ro0 from the crack tip. In this problem for small

values of (r/r ) the stresses may be expressed as

ij(r' 0) rP (r) G() + O[(r/r) ](-rG (o [(lr 0

(0 < a < 1, (i,j) = (r,6), 0 < 0 < a, Re[c 2] > 0). (27)

The functions Gij are shown in Figures 11-13 where m = P2/P1 and

the corresponding material combinations are given in Table 2.

The table also shows the stress intensity factor k defined by

k =lim v-t r a20 (r,O) (28)
r-*0 200

which can be evaluated in closed form [7] and which, in the homo-

geneous medium, is given by

P 2 1/2k := - () *(29)
7r0

Table 2. Stress intensity factors
for semi-infinite crack.

Material m = 2/ 1 k/(P/vro )

Boron-Epoxy 0.0072 0.0511

Aluminum-Epoxy 0.0433 0.1197

Aluminum-Aluminum 1.00 0.4502

Epoxy-Aluminum 23.077 0.8403

Epoxy-Boron 138.462 0.8905

Epoxy-Rigid o 0.9015
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In the general case (for symmetric loading) the asymptotic values

of the stresses for small r may be expressed as

k a2
aj (r,O) = f. (0) + O(r )

(Rea2 > 0, i,j = r,a) , (30)

where the functions fj are related to Gij shown in Figures 11-13

through

fi j() = Gij(0)/G (0) , (i,j = r,O). (31)

In the case of a finite crack perpendicular to the interface,

the stress intensity factors are shown in Figure 14. Here the

external load is a uniform pressure, po0 applied to the crack

surface and the two materials considered are Aluminum (v = 0.3)

and Epoxy (v = 0.35) (see Table 2 for modulus ratio). The power

of the singularity, a for the crack tip terminating at the inter-

face (i.e., c = a ) is given in Table 3. Note that, because of
0

the variation in K, there is a slight difference between the

values of a corresponding to plane strain and plane stress.

Table 3. Stress intensity factors and the power of singularity
for a crack terminating at the interface.

Plane Strain Plane Stress

k(a) k(b) k(a) k(b)
lJ2O/lJp1 ac~~ 'apV - p 

0Po/ao Poa o -o0 p a

23.077 0.3381 2.6237 0.8827 0.2890 4.1760 0.8789

0.0433 0.8258 0.0700 1.3552 0.8230 0.0744 1.3525
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For this case Table 3 also shows the stress intensity factors at

the crack tips r = a = 0 and r = b which are defined by

k(a) = lim At r
s
a2 0 (r,O)

r-*O

k(b) = lim v/2(r - b) clr(r,,) . (32.a,b)
rob

Due to the deviation in a from 1/2 as given in Table 3, the limits

of the curves k(a) shown in Figure 14 as c +-* ao are 0 and - for

P < 2 and Pl > 2' respectively.

To solve the problem of a crack going through the interface,

first the problem of two cracks (one in each material) perpendic-

ular to the interface is considered. The problem is again for-

mulated by using the Mellin transform. In the resulting system

of singular integral equations the input functions are the crack

surface tractions. For the case in which the two cracks are

imbedded into the adjacent homogeneous media, the kernels of the

integral equations have only Cauchy type singularities. Hence

the solution of the problem is rather straightforward. When the

inner crack tips go to the interface, the cracks join and become

a through crack. In this limiting case, even though the integral

equations remain unchanged, the singularities of the kernels

become of the generalized Cauchy type. This means that r = 0

(as well as r = b
I

and r = b2) is an irregular point around which

the solution will have a singularity of the form r -, (0<a<1/2)*.

This is the case for most of the practical material combinations.
However, for some unusual combinations the stresses at r = 0 may
be bounded or may have only a logarithmic singularity (see [19]
for a thorough discussion).
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The system of characteristic equations giving a and the powers

of the singularity at the two (outside) ends of the crack is

obtained by applying the function-theoretic method directly to

the system of singular integral equations.

In the examples considered in this paper, it is assumed

that the material is subjected to tensile loads parallel to the

interface and sufficiently away from the location of the crack.

For the perturbation problem it may then be assumed that the

crack surface tractions are uniform pressures related by

Pl/P2 = E1/E2 (33)

IT 3,fwhere the subscripts 1 and 2 refer to materials 1 (2 < < 2)

and 2 (- < < 0 < ), respectively.2 2

The stress intensity factors for two cracks imbedded into

the adjacent bonded planes are shown in Figure 15. In this

example Material 1 is aluminum, Material 2 is Epoxy, the crack

lengths 2k1 = b1 - al, 2Q2 = b2 - a2 are equal and fixed, a2 is

constant, a2 = 2 2 is the length unit, and the variable is the

distance of the first crack to the interface, or (b1 + al)/2a2 .

In the special case of the homogeneous medium containing two

collinear cracks of equal lengths and subjected to a uniform

pressure po0 on the crack surfaces, the stress intensity factors

are given by [20]

(b2 E(m) - a2 )
k(a) = K(m) 2

po /T (b - a)[a(b + a)]1 / 2
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k(b) = /E b2[1 - E(m)/K(m)]

pO/i? (b - a)[b(b + a)]1
/ 2

(2Q = b - a , m = 1 - a2 /b2 ) , (34.a,b)

where 2a and 2b are the distances between inner and outer tips

of the cracks, respectively. For example, for b = 2a we obtain

k(a) = 1.01762 po 1 /2 , k(b) = 1.01249 poI / 2

Figures 16-22 show some of the results obtained for the

material combination Aluminum-Epoxy. The stress intensity fac-

tors shown in these figures are defined as follows:

k = lim /2(r - b1) olee(r,) ,
r+b

1

k2 = lim 2(r - b2 )
2 0 (r,O) ,

rob2

k = lim rs a (r,7)

kr = lim rs alre(rj) (35.a-d)

The factors ke and kr are a measure of the contact stresses

around r = 0 and may be used in studying the question of debond-

ing crack initiation. The stress intensity factors shown in the

1~~~ ~~~~~/2 and Pfigures are normalized with respect to pli / 2, p2 2 , and p,

where 2Q is the total crack length.

In Figures 16-18 material 1 is aluminum, material 2 is epoxy,

the penetration of the crack into 1 is fixed and is taken as the

length unit, i.e., b1 = 1, and the crack length 2Q (or the crack
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penetration into the second medium) is the variable. For plane

strain case and for the material pair under consideration the

power of singularity at r = 0 (i.e., for two bonded quarter

planes) is found to be a 0.273692. In the limiting case of

: = 0.5, b2 = 0 and the problem reduces to that of a crack ter-

minating at the interface for which the results are given in

Table 3. Since at r = 0 the power of singularity for this limit-

ing case (i.e., a = 0.8258) is greater than 1/2, as seen from

Figures 16 and 17, the stress intensity factors k2, k G, and kr

become unbounded as +- 0.5. For the same material combination

the crack surface displacement is shown in Figure 18. Here the

functions ule(r,'), (0 < r < bl) and u2 0 (r,0), (0 < r < b2 ) are

plotted against the dimensionless variables Cl and 2 defined by

2r I
= 2 l- 1 , 2 = 2 2 - 1 . (36.a,b)

As seen from the figure, because of the singularity at r = 0, it

turns out that the displacement has an unbounded derivative at

r = 0 as well as at r = b
i
, (i = 1,2).

Figures 19 and 20 show the results analogous to that given

by Figures 16 and 17, the difference being that here material 1

is epoxy and material 2 is aluminum. In the limiting case of

2 = 1/2 the power of the singularity is a = 0.3381 (see Table 3),

which is less than 1/2 and is greater than the power of the

singularity a = 0.273692 at r = 0 for Z.> 1/2. Thus, as seen

from Figures 19 and 20, as I goes to 1/2, k2 goes to zero and

kr and k
0
become unbounded.
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Further results for the material Combination Aluminum (1) -

Epoxy (2) are shown in Figures 21 and 22. In this case the total

crack length 22 is constant and the crack eccentricity c is

selected as the variable.

5. PENNY-SHAPED CRACK IN A FILAMENT-REINFORCED ELASTIC MATRIX

In filament-reinforced composites the spacing and the orien-

tation of the filaments are generally random. However, in some

cases it is desirable and, to a certain extent, possible to con-

trol the orientation of the filaments in the matrix. In this

Section we will describe some of the results of a study on the

stress distribution in a filament-reinforced elastic matrix con-

taining a penny-shaped crack [21]. It will be assumed that

(a) the matrix is "sparsely" reinforced by a finite number of

filaments which are symmetrically distributed around the crack

and are oriented perpendicular to the plane of the crack, (b)

z = 0 is a plane of symmetry for the external loads and for the

geometry, and (c) the filament radius ro is small compared to

its length 2c. Under these assumptions the problem can be for-

mulated in terms of an integral equation with essentially the

interface shear stress between the filament and the matrix as

the unknown function. The main interest in this problem is in

the evaluation of (a) the stress intensity factor at the crack

periphery as a function of e, (0 < a < 2r), (b) the contact

stress between the filament and the matrix as a function of z,

(-c < z < c), and (c) the stress concentration factor in the

filament.
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Figures 23-25 show the 0-dependence of the stress intensity

factor, K1. In the examples given in this Section it is assumed

that the medium is subjected to uniaxial tension in z-direction,

Ozz = o0, away from the location of the crack and the filaments.

Figure 23 shows the variation of the stress intensity factor in

the case of a single filament for various values of filament-to-

matrix modulus ratio, Ef/E and for filament-to-crack center dis-

tance, b. It is seen that the effect of the filament on the

stress intensity factor becomes more significant as the distance

b decreases and as the modulus ratio Ef/E increases.

The effect of the number L of symmetrically located (iden-

tical) filaments on the stress intensity factor for a given modu-

lus ratio, (Ef/E) = 100 is shown in Figure 24. The figure indi-

cates that for b > 1.5 and L > 6 the 0-dependence of the stress

intensity factor may be neglected. Figure 25 shows the effect

of the modulus ratio, Ef/E on K1 for L = 2 and L = 4.

Finally, the effect of the modulus ratio on the maximum

tensile stress in the filament is shown in Figure 26. Here
- f
cf (0) is the stress in the filament at z = 0 and ao is the

stress in the matrix away from the crack-filament region. For

large values of the filament length 2c and the distance b we

have (acf(O)/ao) (Ef/E). For comparison the figure also shows

the stress at the same location in the absence of any filaments

(i.e., for Ef = E) obtained from the axisymmetric penny-shaped

crack solution [22]. Further results on this problem may be

found in [21]. An approximate solution of a special case of the
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problem is given in [23] where the 0-dependence of the stress

state in the composite medium is neglected.

6. INCLUSION PROBLEMS IN BONDED DISSIMILAR MATERIALS

In some composites material imperfection may be in the form

of an elastic inclusion rather than a crack. In this case it

may be expected that due to the high stress concentration, the

neighborhood of inclusion borders would be the likely location

at which the fracture nucleation would occur. To give some idea

about the nature of the problem, in this Section we will discuss

the solution of an idealized plane inclusion problem. It will

be assumed that the inclusion is oriented parallel to the inter-

face of two bonded elastic half planes and the thickness of the

inclusion is very small compared to its lateral dimensions.

Thus, analytically, it can be approximated by a singular surface

across which the displacement vector is continuous and the stress

vector suffers a discontinuity. The formulation of the problem

then leads to a system of singular integral equations.

In the case of a perfectly rigid inclusion, the solution of

the plane problem gives the stress state'in the close neighbor-

hood of an end point as follows (see [9]):

a I(r 1 /(klCos + K + 1 k sin-) + O(r / 2

xy (r,) 2r)1 2 (- k sin + k2 cose) + 0(rl/2 )

x(r,0) = -1 3+K 0cos + 3-K k sin) + O(r /2)
(2r)1 /2 K - 1 1co -- 1 2 sin 
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rei 9 = x - a + iy , (-v < e < 7) , (37.a-c)
6

where a is the half-length of the inclusion. If the distance,

h from the inclusion to the interface becomes zero (i.e., if the

inclusion is located on the interface), the problem can be solved

in closed form [9]. In this case, similar to the interface crack

problems, the stresses at the end point have the well-known

oscillating singularity; hence, at h = 0, the stress intensity

factors k1 and k2 (considered as functions of h) are discontinuous.

Perhaps a more realistic model for the inclusion would be an

elastic layer with known extensional stiffness. Since the rela-

tive thickness of the inclusion is assumed to be very small, its

bending stiffness will also be very small and may be neglected.

For this "elastic membrane" type of inclusion the stress state

around the end point may be expressed as [9]

•yy(r,e) = k2 cos2 + O(r1 /2 )

yy (2r)1 1 2

xy (re) = k sin0- + O(r1 / 2)

a (r,) = - 3k2r)/2 cose + O(r/2) (38.a-c)

Here as h -*+ 0, unlike the problem of rigid inclusion, the inte-

gral equation does not change its character and remains as a

singular integral equation of the first kind. Hence the singular

behavior of the stress state maintains its simple r-1/2 character

(see Figure 28).
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Figures 27-29 show some of the results obtained for rigid

and elastic inclusion. In these examples it is assumed that the

medium is subjected to symmetric loading away from the location

of the inclusion. Thus the displacements in the medium without

the inclusion and at the same location as the inclusion may be

expressed as

u = - Cox , vo = 0 . (39)

The constant ko shown in the figures which is used to normalize

the stress intensity factors is defined by

ko = 2oa (K2 1 )/2 - (40)

where P2 and K2 are the elastic constants of the medium surround-

ing the inclusion.

Figure 27 shows the results for a rigid inclusion in two

bonded elastic half planes and that in a half plane. Similar

results for an elastic inclusion are shown in Figure 28. Figure

28 also shows the stress intensity factor for an inextensible

inclusion with zero bending stiffness. The values of k for

h + 0 are obtained from the interface inclusion problem or from

the problem of a stiffener bonded to an elastic half plane [24].

The figure indicates that the stress intensity factor is highly

dependent on the stiffness of the inclusion.

In this problem too one could determine the orientation of

the probable fracture nucleation by considering the cleavage

stress oe as a function of a. For example, for the elastic
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inclusion problem from (38) we obtain

oa0 (r,e) = (2cos0 cos2e - cos0 - sino sin2e)
( 2 r )1 /2 2c c1 2 2 .2

+ O(r1 / 2 ) , (-Tr < e < r) . (41)

From (D0 0 /20) = 0 we find 8 = 0° , 74.3 °, 151 °. The angular

variation of 0a is shown in Figure 29. It is seen that if the

medium is loaded perpendicular to the inclusion the fracture

initiation will most likely be collinear with the inclusion with

possible secondary radial cracks along 0 = ±+ 151 °. On the other

hand if the medium is loaded parallel to the inclusion the frac-

ture would most likely nucleate along (roughly) 0 = + 74.3°

radial lines.
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